
The Linux Implementation of a Log-structured File System

Ryusuke Konishi
ryusuke@osrg.net

Yoshiji Amagai
amagai@osrg.net

Koji Sato
koji@osrg.net

Hisashi Hifumi
hifumi@osrg.net

Seiji Kihara
kihara@osrg.net

Satoshi Moriai
moriai@osrg.net

NTT Cyber Space Laboratories, NTT Corporation
1-1 Hikari-no-oka, Yokosuka-shi,

Kanagawa, 239-0847, Japan

ABSTRACT
Toward enhancing the reliability of the Linux file system,
we are developing a new log-structured file system (NILFS)
for the Linux operating system. Instead of overwriting ex-
isting blocks, NILFS appends consistent sets of modified or
newly created blocks continuously into segmented disk re-
gions. This writing method allows NILFS to achieve faster
recovery time and higher write performance. The address
of the block that is written to changes for each write, which
makes it difficult to apply modern file system technologies
such as B-tree structures. To permit such writing on the
Linux kernel basis, NILFS has its own write mechanism that
handles data and meta data as one unit and allows them to
be relocated. This paper presents the design and implemen-
tation of NILFS focussing on the write mechanism.

1. INTRODUCTION
As use of open-source operating systems advances not only
for stationery PCs but also for backend servers, their reliabil-
ity and availability are becoming more and more important.
One important issue in these operating systems is file sys-
tem reliability. For instance, applying Linux to such fields
was difficult several years ago because of the unreliablity
of its standard file system. This problem has been signifi-
cantly eased by the adoption of journaling file systems such
as ext3[9], XFS[2], JFS[1] and ReiserFS[3].

These journaling file systems enable fast and consistent re-
covery of the file system after unexpected system freezes or
power failures. However, they still allow the fatal destruc-
tion of the file system due to the characteristic that recov-
ery is realized by overwriting meta data with their copies
saved in a journal file. This recovery is guaranteed to work
properly only if the write order of on-disk data blocks and

meta data blocks is physically conserved on the disk plat-
ters. Unfortunately, this constraint is often violated by the
write optimizations performed by the block I/O subsystem
and disk controllers. Careful implementation of write bar-
riers and their correct application, which partially restrict
the elevator seek optimizations, is indispensable for avoiding
this problem. However, strict write ordering degrades stor-
age performance because it increases disk seeks. Journaling
file systems degrade performance due to the seeks between
the journal file and original meta data blocks. At present, a
few Linux journaling file systems support the write barrier,
but it has not yet taken hold. Only XFS has recently made
it effective by default. We seem to be faced with a trade-off
between performance and reliability.

One interesting alternative approach is called log-structured
file system (LFS)[6, 7]. LFS assures reliability by avoiding
the overwriting of on-disk blocks; the modified blocks are ap-
pended to existing data blocks as is done for log data. This
write method also improves performance since the sequential
block writes minimize the number of disk head hops.

With regard to data recovery, we see the need for realizing
more advanced features through the use of the technique
called “snapshot”. Snapshots reduce the possibility of data
loss including those caused by human error. Some commer-
cial storage systems support this feature, but they are costly
and are far from common. LFS suits data salvage and snap-
shots because past data are kept in disk. It can improve the
restorability of data, and can compensate for operational
errors.

Some LFS implementations appeared in the ’90s, but most
of them are now obsolete. As for 4.4BSD and NetBSD,
an implementation called BSD-LFS [8] is available. As for
Linux, there was an experimental implementation called Lin-
LogFS[5], but its development was abandoned and it’s not
available for recent Linux kernels. This is primarily due
to the difficulty of implementing LFS; LFS basically stores
blocks at different positions at each write. Combining LFS
with a modern block management technique such as the B-
tree[4] is a significant challenge. To overcome this shortfall,
we are developing NILFS, which is an abbreviation of the
New Implementation of a Log-structured File System, for

102



Super block

Seg 0 Seg 2 ... Seg

Full segment

...Seg i

Segment usage chunks

... ...

Seg 1 n

Segment summary

Payload
blocks

... ...File blocks File B-tree
blocks

Inode
blocks

Inode
B-tree
blocks

Check
point

Write direction

Payload
blocks

Payload
blocks

Logical segment

Partial segment

Figure 1: Disk layout of NILFS

the Linux operating system.

The rest of the paper is organized as follows. Section 2
overviews NILFS design. Section 3 focuses on the writing
mechanism of NILFS, the key to our LFS implementation
for Linux. After showing some evaluation results in Section
4, we conclude with a brief summary.

2. OVERVIEW OF THE NILFS DESIGN
2.1 Development goals
The development goals of NILFS are as follows:

1. High availability

2. Adequate reliability and performance

3. Support of online snapshots

4. High scalability

5. Compliance with Linux semantics

6. Improved operability with user-friendly tools

High availability means that the recovery time should match
those of existing journaling file systems. For this purpose, a
DB-like technique called checkpointing is applied. However,
NILFS recovery is safer because it prevents the overwriting
of meta data. In contrast, journaling file systems restore
important blocks from the journal file during recovery. This
can cause fatal collapse if the journal file is not written per-
fectly.

NILFS offers online snapshot support and adequate relia-
bility and performance by taking advantage of LFS. Online
snapshot support allows users to clip the consistent file sys-
tem state without stopping services and then helps with
online backup. The requirement of high scalability includes
support of many files, and large files and disks with mini-
mum performance degradation. We would like to implement

NILFS without losing compliance with Linux file system se-
mantics and to minimize changes in the kernel code. We
note that the development of user tools is a future task.

2.2 On-disk representation
On-disk representation of inode number, block number and
other sizes are designed around 64-bits in order to eliminate
scalability limits. Data blocks and inode blocks are managed
using B-trees to enable fast lookup. The B-tree structures
of NILFS also have the role of translating logical block offset
addresses into disk block numbers. We call the former file
block number and the latter disk block number.

Figure 1 depicts the disk layout of NILFS. Disk blocks of
NILFS are divided into units of segments. The term segment
is used in multiple ways. To avoid ambiguity, we introduce
three terms:

• Full segment:
Division and allocation units. The full segment is ba-
sically divided equally and is addressable by its index
value.

• Partial segment:
Write units. Each partial segment consists of segment
summary blocks and payload blocks. It cannot cross
over the full segment boundary. The segment sum-
mary has information about how the partial segment
is organized. It includes a breakdown of each block,
length of the segment, a pointer to the summary block
of the previous partial segment, and so on.

• Logical segment:
Recovery units. Each logical segment consists of one
or more partial segments. It represents the difference
between two consistent states of a file system. The
partial segments composing a logical segment are re-
garded, logically, as one segment.

A logical segment consists of file blocks, file B-tree node

103



System Call Interface

Virtual File System (VFS)

Buffer Cache Layer
Page Cache
(Radix-Tree)

File Inode
Operations

Directory Inode 
Operations

File Page Operations

Mount/Recovery
Operations

Segment
Constructor

Block Manager
(B-Tree)

Segment
Manager

Block I/O Layer (BIO)
Device Driver

B-Tree Node Cache

inode_ops inode_opssuper_ops

BIO write

data
read

meta data
read

segment
allocation

segment
lookup

lookup/insert/delete

BIO read

BIO read

Parts of NILFS

Figure 2: Block diagram of NILFS

blocks, inode blocks, inode B-tree node blocks, and a check
point block. The B-tree node blocks are intermediate blocks
composing B-tree structures. The check point block points
to the root of the inode B-tree and holds inode blocks on the
leaves. Each inode block includes multiple inodes, each of
which points to the root of a file B-tree. File data and direc-
tory data are held by the file B-trees. These payload blocks
are a collection of modified or newly created blocks. Since
pointers to unchanged blocks are reused, the B-tree node
blocks or unchanged inodes may have pointers to blocks in
past segments. Thus, the check point block represents the
root of the entire file system at the time the logical seg-
ment was created. Snapshots are realized as the ability to
keep the on-disk blocks trackable from all or selected check
points. The segment summary and the check point use cyclic
redundancy checksums (CRCs) to assure validity of them-
selves and the payload blocks.

The full segments are managed using two more special types
of blocks, the super block and the segment usage chunk.
The super block holds basic information of the file system,
disk layout parameters, and a pointer to the latest partial
segment having a valid check point. The segment usage
chunk includes the information needed to allocate the full
segments. It also includes bidirectional links to give a log-
ical sequence among the full segments. These blocks are
redundantly stored between full segments.

2.3 Implementation architecture on Linux
Figure 2 shows the block diagram of NILFS. The upper part
of NILFS is realized by implementing the object-orient in-
terface of the Linux Virtual File System (VFS). It is com-
posed of mount operations, file inode operations, and di-
rectory inode operations. The mount operations read the
super block and build on-memory data structures represent-
ing a file system instance. During unmounting, it cleans up
all resources of the file system instance. Recovery is exe-
cuted as a part of the mount operations. It is realized by

locating the valid checkpoint over partial segments. This
search starts from the partial segment pointed to by the su-
per block. The file inode operations read, write, delete, and
truncate files through the manipulation of file inodes and
file data blocks. The directory inode operations perform
lookup, listing, creation, removal, and renaming of nodes
on directories through the manipulation of directory inodes
and directory data blocks.

The lower part of NILFS is entirely new and is composed
of a block manager, a segment constructor, and a segment
manager. These parts call generic functions of the Linux
file cache layer or directly call the Linux block I/O (BIO)
Layer. The Linux file cache layer consists of the buffer cache
and the page cache. The buffer cache is a legacy interface,
and recent kernels basically utilize page caching. The block
manager uses its own cache for B-tree node blocks, called
the B-tree node cache, which we describe later. The block
manager is realized as the B-tree function itself. It gives the
functions required to manage blocks such as lookup, insert
and delete for both the inode blocks and the file blocks.
The segment constructor collects newly created blocks and
modified blocks and builds the partial segments needed to
hold them. These on-memory blocks to be written to disk,
called dirty blocks, are bulk written to the partial segments
via the Linux BIO layer.

The segment manager serves as a full segment allocator and
a cleaner. The cleaner is one of the essential LFS functions.
It identifies unwanted blocks and makes continuous empty
regions. This process is called garbage collection or cleaning.
It cleans out segments by copying in-use blocks and their
referrers. Without snapshot, it is conceptually simple as just
described. However, for LFS with many valid snapshots, it
is hard to implement this procedure efficiently because many
blocks and links are involved. The cleaner is currently under
development.

104



3. IMPLEMENTING WRITE MECHANISM
This section describes details of how we realized the seg-
ment constructor on Linux. Although the Linux kernel is
designed to efficiently share common functions for simplify-
ing the implementation of a number of different file systems,
they are not strongly supportive of LFS:

1. Static placement of blocks:
Because LFS changes the on-disk location of both data
blocks and meta data blocks when writing them out,
it needs to modify their block addresses. For the meta
data blocks, a reindexing on the page cache is also
required because they are indexed by absolute address
over a block device 1. We be careful of timing concerns
and the side-effects of these operations.

Managing newly allocated blocks is another topic to
be considered. The position of these blocks cannot be
decided until just before writing them. Consequently,
their locations are transiently indeterminable and can-
not be managed via the block address.

2. Granularity of writing:
The typical Linux file system writes data blocks per
page, and meta data blocks per block. Even though
the page cache and the BIO layer have the ability to
write multiple pages at a time, they are written sep-
arately with each file and with each block type. Such
fine grained control is convenient for the file systems
since they use the write order among various blocks,
but not for LFS, because the atomicity of LFS writing
is per segment not per page.

3. Differences in the treatment of meta data and data:
Data blocks are mainly treated by shared code, whereas
meta data are handled differently by each file system.
Way of writing, synchronizing, locking, and error han-
dling, is different between data and meta data. Even
though LFS can write both types of blocks in the same
way, we had to distinguish them to adapt to the shared
kernel code.

To allow meta data blocks to change block address, we have
introduced our own meta data cache. The cache is realized
by extending the standard one to enable holding blocks with
no fixed block address. For managing data blocks, we have
adopted the standard page cache because these blocks were
indexed with file offset and then it was reusable.

The segment constructor carries out both background writes
and foreground writes. The foreground writes are requested
by synchronous write operations of the VFS layer. The seg-
ment constructor consolidates write timing and provides a
unified mechanism to write out the blocks to be written.
This aggregation is natural since it supports the segment-
based atomicity of writing, exclusion controls, and so on. It
also provides straightforward implementation through direct
manipulation of the BIO layer.

1Strictly speaking, the indexing is realized per page; multi-
ple blocks may be held within a single page.

3.1 Procedure of segment construction
Since the B-tree node block of NILFS points to child blocks
with disk block numbers, the pointers must be changed when
the location of a child block changes. This change makes the
B-tree node block dirty, and makes it the block to be written
out. It also changes the pointer in its parent block. Thus,
the dirty state propagates through all ancestors up to the
checkpoint block.

Because B-tree construction may dramatically change due
to insert and delete operations, the current NILFS version
delays this propagation and performs it during segment con-
struction. This also prevents the dirty B-tree node blocks
from occupying memory for long periods.

To fix the number of dirty blocks to be written in the next
partial segment before renumbering the disk block number,
NILFS separates dirty state propagation from renumbering;
segment construction is realized as follows:

1. Collecting dirty blocks.

2. Propagating dirty state upstream.

3. Getting a complete set of dirty blocks and building a
segment.

4. Renumbering the absolute address of each block, re-
placing the pointers to the block, and moving it in the
page cache.

5. Calculating CRC and finalizing both the segment sum-
mary and the checkpoint.

6. Submitting write requests using BIO and waiting for
completion.

Figure 3 depicts the workflow that we employ to realize these
procedures. Instead of making a whole image of the logical
segment, we build, one-by-one, the partial segments compos-
ing it. For this we employ a buffer (segment buffer) whose
capacity is just one full segment. This on-the-fly approach
simplifies the handling of the long logical segments that cross
over multiple full segments.

First, a partial segment is allocated from a current full seg-
ment. If no space is left in the current segment, the segment
constructor calls the segment manager to allocate a new full
segment. It then carries out procedures 1-3 simultaneously.
This is shown as the collection phase in Figure 3. In the
collection phase, one or more segment summary blocks and
payload blocks, are registered with the segment buffer. If
the number of registered blocks reaches capacity of the allo-
cated partial segment, or the collection for one logical seg-
ment completes, then procedures 4-6 are applied for blocks
of the partial segment using the segment buffer. The collec-
tion phase is designed to be suspendable and continuable.
It is repeatedly applied until the construction of the logical
segment is completed.

The collection phase has five stages which are executed se-
quentially. The FBLK stage collects dirty file blocks through
gang lookup of the page cache. It also tracks back the B-
tree file node blocks and propagates the dirty flag upstream.

105



Stage sorting

Partial segment
allocation

Collection Phase

PSeg
Full

Start

FBLK
stage

FBT
stage

IBLK
stage

IBT
stage

CP
stage

PSeg
Full

PSeg
Full

PSeg
Full

PSeg
Full

Full segment
allocation

Segment
Manager

Segment
Buffer

CRC calculation

LSeg
Done

Renumbering &
Replacement

LSeg
Start

Writing with BIO

End

LSeg is done
LSeg is unfinished

...

payload
block 1

payload
block 2

summary
block 1

summary
block 2

...

block index
(payload)

payload
block 3

block index
(segment summary)

registering collected blocks

accessing to
collected blocks

...

Figure 3: Main workflow of the segment construction

The FBT stage propagates the dirty flag from the B-tree file
node blocks and collects all dirty ones. The IBLK stage and
the IBT stage do the same thing to the inode blocks and the
inode B-tree node blocks, respectively. The CP stage adds a
checkpoint block to the segment buffer. The summary block
is extended and appended along with those stages. Because
the number of summary blocks depends on the configuration
of the segment, the segment buffer fills them backward from
the tail end.

3.2 Techniques to mitigate construction over-
head

Some techniques can be applied to reduce the load created
by segment construction. First, we prepare a list chaining
the inodes whose files are regarded as dirty. The list, called
the dirty file list, allows the FBLK stage and the FBT stage
to avoid exhaustive lookup over the page cache. The inode
of dirty file is inserted in the list when pages of the file are
committed to write. The inode is removed every time the
logical segment is completed.

Avoiding unnecessary construction is also effective because
it cuts down on the number of high cost disk writes. Early
cancellation, in addition, mitigates overhead due to the lookup
operations over the page cache and B-trees. The segment
constructor of NILFS reconfirms the need for construction
on a few occasions, by using the dirty file list and the flag
that indicates whether the B-tree is modified or not.

With regard to block reindexing for the meta data cache,
architecture dependent optimization was used. Since each
page may have multiple blocks, the B-tree node blocks have
to be separated and to be copied from the original page
when their disk block number changes. This copying can
be replaced by moving if the block size equals the page size.
Although this brings in some asymmetry, it works with most
common 32-bit PCs.

4. EVALUATION
We compared NILFS to ext3 using the “iozone” benchmark
program. The measurement computer had a Pentium 4
3.0GHz CPU, 1-Gbyte of memory, and 7,200rpm IDE hard
drives with 8-Mbyte disk cache and Ultra ATA connection.
The Linux kernel version was 2.6.13. Both the disk block
and page have sizes of 4 Kbytes.

Figure 4 shows the measurement results for writing. The
journaling mode of ext3 is the default ordered mode. Be-
cause current NILFS has no cleaner and is not tuned at all,
these are just preliminary values. To compare actual disk
write performance, write synchronization was forced in two
ways. The left graph shows write throughput synchronized
by the fsync() system call, whereas the right graph shows
that synchronized with the O SYNC open system call op-
tion. The horizontal axis gives the write buffer size. In the
random write measurements, an existing file is rewritten.
In the sequential write measurements, new files are created.
NILFS shows higher write throughput in both random write

106



 0

 10

 20

 30

 40

 50

 60

 70

 32 16 8 4 2 1

T
hr

ou
gh

pu
t [

M
B

yt
es

 p
er

 s
ec

on
ds

]

Buffer Size [KBytes]

Measurement with fsync()

 ext3 (sequential write)
 ext3 (random write)
nilfs (sequential write)
nilfs (random write)

 0

 5

 10

 15

 20

 25

 30

 32 16 8 4 2 1

T
hr

ou
gh

pu
t [

M
B

yt
es

 p
er

 s
ec

on
ds

]

Buffer Size [KBytes]

Measurement with O_SYNC option

 ext3 (sequential write)
 ext3 (random write)
nilfs (sequential write)
nilfs (random write)

Figure 4: Comparison of write performance

 0

 10

 20

 30

 40

 50

 60

 70

 32 16 8 4 2 1

T
hr

ou
gh

pu
t [

M
B

yt
es

 p
er

 s
ec

on
ds

]

Buffer Size [KBytes]

Measurement with buffer flushing

 ext3 (sequential read)
 ext3 (random read)
nilfs (sequential read)
nilfs (random read)

Figure 5: Comparison of read performance

and sequential write. The superiority of NILFS is particu-
larly noticeable in the random write. These results are due
to the smaller number of disk seeks.

On the other hand, the read performance of the current
NILFS version is unsatisfactory as shown in Figure 5. To get
real read performance, caches are flushed through unmount
and mount operations. These operations can flush both the
on-memory cache and the disk cache. Under the condition
where the caches are flushed in advance, it achieves only
61% or so of throughput of ext3 for sequential read, and
72% for random read. In this regard, however, LFS assumes
the existence of the disk cache. If the disk cache is enabled,
both file systems show approximately the same throughput
because many blocks are read from memory. Anyway, we
recognize that read performance tuning is a priority target.

5. CONCLUDING REMARKS
We described the implementation of NILFS focussing in the
LFS write mechanism. NILFS is distributed under GPL
through the NILFS homepage (http://www.nilfs.org/). NILFS
is a reimplementation of LFS and adopts B-tree based block
management and supports snapshots. It offers an LFS al-
ternative to the Linux operating system. Although it does
not have an essential portion, the so-called cleaner, we are
expecting that it will satisfy the very high level of reliability
demanded for modern open-source operating systems.

6. REFERENCES
[1] JFS for Linux. http://jfs.sourceforge.net/.

[2] Project XFS Linux. http://oss.sgi.com/projects/xfs/.

[3] ReiserFS. http://www.namesys.com/.

[4] R. Bayer and E. McCreight. Organization and
maintenance of large ordered indexes. Acta
Informatica, 1(3):173–189, 1972.

[5] C. Czezatke and M. A. Ertl. LinLogFS — a
log-structured filesystem for Linux. Freenix Track of
Usenix Annual Technical Conference, pages 77–88,
2000.

[6] J. Ousterhout and F. Douglis. Beating the I/O
bottleneck: a case for log-structured file systems. ACM
SIGOPS Operating Systems Review, 23(1):11–28, 1989.

[7] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, 1992.

[8] M. I. Seltzer, K. Bostic, M. K. McKusick, and
C. Staelin. An implementation of a log-structured file
system for UNIX. USENIX Winter, pages 307–326,
1993.

[9] S. C. Tweedie. Journaling the Linux ext2fs filesystem.
LinuxExpo ’98, 1998.

107




